

December 2001 1/8
Java Developer’s Journal

Most Java developers intuitively understand the advantages of using a rich Java Swing user
interface instead of an HTML interface. The fact that rich user interfaces provide a better
experience for the user has often been cited as the primary reason they should be employed in a
particular application.

In this article, however, we provide four factors that support the claim that rich user interfaces
may be the better choice for many applications - and not just because they provide a better user
experience.

We begin by illustrating that rich GUIs can be developed and maintained at a lower cost than
HTML-based user interfaces. We then argue that since Web services are typically highly
interactive in nature as opposed to being a data delivery system, rich GUIs may be more
appropriate than HTML interfaces for Web services. And finally, we describe a new architecture,
which we refer to as the Application Canvas, for development of Web services-based applications
that allow for integration of autonomous Web services on the client. As the application canvas is
user-programmable, the user is able to link outputs of one Web service to the inputs of another,
thereby, allowing the user to derive functionality not foreseen by systems developers.

Pros and Cons of Rich User Interfaces
We define rich user interfaces to mean Java Swing-based user interfaces. These interfaces
improve user experience, but the advantages most overlooked are lower development and
maintenance costs - and a high potential for reuse of interface components.

Some believe that rich GUIs are expensive to build. We argue that rich user interfaces can be
built at the same cost, if not less expensively, than HTML-based user interfaces. Additionally, until
recently, a case could be made that another disadvantage to rich GUIs was deployment. We'll
address this issue by detailing the significant progress made in Java deployment technologies to
drive deployment costs to a level comparable to the cost of deployment of HTML user interfaces.

The Case for Rich User Interfaces
Rich user interfaces are composed of high-level user interface components, such as tabbed
panes, table widgets, and tree widgets. Compare an HTML tabbed pane with a tabbed pane in a
rich user interface.

A tabbed pane is a single component in the Swing component set, and the properties of this
component are standardized and well documented. In contrast, an HTML interface can display a
tabbed pane; however, the designer must put a tabbed pane together from lower level graphics,
HTML, and possibly JavaScript components. The construction of the HTML tabbed pane is likely
to be nonstandard and may entail the development of a significant amount of scripting code.
Therefore, developing a user interface that requires a tabbed pane in Java Swing will require less
code to be written than a user interface with the same functionality developed in HTML. That's
why sophisticated HTML user interfaces, especially when combined with JavaScript, may prove

December 2001 2/8
Java Developer’s Journal

to be more expensive to build and maintain than rich user interfaces composed of high-level user
interface components.

Maintenance and cost of development of software systems, as well as user interfaces, are often
measured by the degree of reuse achieved during development. Reuse is extremely difficult to
achieve when the interface is built from low-level HTML and JavaScript components. But when
the interface is built from high-level Java Swing components, reuse is much easier to achieve.
Composite widgets can be constructed from Swing JavaBeans and later reused throughout the
user interface of the application.

Another advantage to using high-level user interfaces is that the skills required to develop an
HTML user interface and the skills required to develop a Java application are often possessed by
different sets of professionals. Hypertext interfaces are best designed by graphic artists, who
have training using HTML design tools. Many Java programmers are excellent in designing Java
user interfaces but are not motivated to use graphics design programs that are often required to
develop usable HTML interfaces. Therefore, developing an HTML interface will often require the
hiring of a graphic artist in addition to the Java programmer developing the application.

High-level interfaces allow local updates whereas HTML interfaces require a whole page refresh.
The fact that the whole page needs to be refreshed introduces additional delays the user must
deal with. This fact may be a significant usability concern for those who must use the application
every day. Users of mission- and time-critical applications, such as financial trading, supervisory
control, and data acquisition systems, may find such delays a serious usability issue.

Highly Interactive Applications
Hypertext-based interfaces have been developed as a mechanism for browsing through large
amounts of text. They are, therefore, well adapted for browsing text-based documents, such as
electronic newspapers and other data delivery systems. But the hypertext model doesn't work
well for many highly interactive software applications, such as financial trading systems, software
development systems, control systems, and accounting systems. Many Web services are likely to
exhibit more characteristics of interactive applications than data delivery systems. Therefore, rich
user interfaces may be a better choice for many Web services-based applications.

The advantages of using high-level user interfaces as discussed so far have focused on usability
issues, but the architectural advantages of using them may be of greater importance to systems
designers. This may be especially true in the case of systems that are built from autonomous
Web services components. Rich user interfaces allow separate Web services to be tied together
using object-dependency mechanisms.

For example, a text field that is the output of one Web service can be set up to have dependent
text field widgets that are inputs to other Web services. Dependency-directed backtracking
algorithms can be used to trigger computations that are performed by a number of cooperating
Web services.

The Case Against Rich User Interfaces
It's often argued that rich user interfaces are more difficult to develop than hypertext-based user
interfaces. The difficulty most often cited is that Java GUIs require the development of a client
application, or applet, that supports the interface. Once the application is developed, additional
code needs to be written in order to connect the application with a server. The methods of
connecting the client and the server have not been standardized. There are a number of
possibilities ranging from Remote Method Invocation (RMI) to HTTP/XML-based schemes. In
addition, a server-side portion of the application often needs to be developed in order to provide
data marshalling and unmarshalling, as well as code that coordinates the logic contained in the
client and the logic contained in the server.

December 2001 3/8
Java Developer’s Journal

Recently, however, a new architecture has emerged that allows a Java client to be deployed
directly from servlets and JavaServer Pages (JSP). This architecture is identical to that used for
the development of applications that present an HTML interface. The fact that the same
architecture can be used for the development of Java and HTML clients suggests the
development costs for each type of user interface should be similar. As we have argued earlier,
however, development and maintenance costs may be lower for the rich user interface as it's
constructed from higher-level reusable components.

Tipping the Scale
Deployment is the single most important consideration that can tip the scales in favor of HTML.
HTML interfaces will run without installation on any machine that supports an Internet browser.
The penetration of Java Virtual Machine installations, however, is far behind the number of
machines that have a browser installed. Java deployment technologies have made significant
progress in recent months.

Depoyment technologies such as Sun Microsystems' Java Web Start and Sitraka's Deployment
Director can ensure that the client machine is precisely up-to-date. But these technologies require
a one-time download of about 5MB and possibly some intervention from the user. That's why
HTML may be the better solution for consumer applications that are intended for novice computer
users and are deployed over the Internet in an uncontrolled environment. To deploy applications
that are used for mission-critical functions over the Internet and intranets, current deployment
technologies will prove to be adequate.

Rich Client Systems Architectures
With the advent of Web services, an application architecture based on cooperating Web services
has emerged. Modern applications are constructed from Web services that are optimized for a
particular purpose. For example, a car rental service can be combined with a flight-booking and
hotel-reservation service, a personal calendar service, and a personal wallet service into a single
application. We focus on two approaches for connecting cooperating Web services based on the
Model View Controller (MVC) pattern in which the cooperating services form the Model layer. In
the first approach, the Web services are connected on the server, whereas in the second
approach, the services are connected on the client.

Connecting Multiple Application Services
Multiple services can be combined into a single application on the server and presented to the
user as a single monolithic application that performs a particular unified service. The user is not
aware that the application is actually composed of multiple services and doesn't need to
understand the intricacies of each of the services. This architecture is depicted in Figure 1.

The Controller
The integration of multiple cooperating services is the function of the application controller. It's the
application controller that must coordinate and tie the services together. The user of the
application is then simply presented with a single application interface and isn't aware that the
application is composed of several cooperating Web services. The application controller doesn't
concern itself with persistence. Persistence is the responsibility of services that reside in the
Model layer. The controller can often be programmed as a collection of server-side JavaBeans
that connect to the required services and are accessed by the View layer to display a user
interface.

The JavaServer Pages View Layer

The View layer can be implemented on top of a servlet engine as a collection of JavaServer
Pages (JSPs) or servlets. If the view is composed of JSPs, then the view must be made specific
to the output format expected by the client machine. In the case of HTML clients, the JSPs output

December 2001 4/8
Java Developer’s Journal

HTML. In the case of rich Java clients, the JSPs output a program or markup language that can
be interpreted by the Java client. In the case of wireless clients, the JSPs output WML. It's
important to emphasize here that rich Java clients shouldn't receive special treatment and
shouldn't require development of an additional component to handle interaction with the rich
client. If development of an additional component were required, additional costs would be
incurred. The rich client must therefore be able to behave as if it were a browser and request new
JSPs as its user "browses" through the Java Swing user interface.

The XML View Layer
If the View layer is implemented as a collection of servlets, the output from the servlets can be
device-specific to the display format used by the client, or it can be made display-format agnostic.
If the view servlets are to be made independent of the display device, they must output XML
independent of all devices. The XML output must then be transformed into a display-specific
markup or script language using an XSLT processor. Again, no special consideration should be
given to the rich Java client. The Java client should be able to interpret output from the XSLT
processor.

Push-Based Architectures
Certain rich client applications require the ability to push real-time data to the client as opposed to
relying on refresh operations. In this case, the client must incorporate a listener component that
listens to messages broadcast from the controller. The messages might be encoded in XML or
simply contain a script that will then be interpreted by the client to display a user interface.

Remote AWT-Based Architectures
The Remote Abstract Windowing Toolkit (RAWT) architecture is similar to the X Window System
pioneered in the Unix operating system. Essentially, RAWT allows an application executing on
one machine to display a Java user interface on another. Events trapped on the client machine
are transferred to the machine where the program actually executes. This architecture is similar
to the thick client architecture, except that the application executes on the server as opposed to a
remote client. The difference is, of course, that communication between the presentation layer of
the application that displays the user interface and the rest of the application is done using local
procedure calls as opposed to remote procedure calls.

The disadvantage of combining multiple application services on the server is that the user is
deprived of the ability to combine multiple services in a way not envisioned by the programmer. In
certain environments, users require a high level of customization and, often, frequent changes to
the user interface and functionality of the application. This is the case when a new application is
being developed and its users modify requirements as they learn more about how they could use
the application to perform a business function.

The Application Canvas
The application canvas is the software that makes the integration of separate Web services
possible on the client. The application canvas is like a modern-day spreadsheet that enables the
output from one Web service to be tied to the input of another. The application canvas directs
computation using a dependency-directed backtracking algorithm that computes the values of
each individual cell - just as a spreadsheet would.

A key advantage of using an application canvas is that each Web service can now maintain its
own separate user interface that allows the Web service to be used regardless of the presence of
other services. That is, each Web application service can be displayed on the canvas and used
independently. This frees system developers from building a server-side controller as the
controller actually resides on the client in this case.

December 2001 5/8
Java Developer’s Journal

The user interface displayed by each Web service should be a rich user interface that allows the
programmers and the users to create dependencies between output cells of one service and
input cells of another.

Entirely Dynamic, Entirely Independent
To provide the elements of functionality needed to integrate separate application services into a
useful application, the application canvas must incorporate most, if not all, of the following
components.

The application canvas must provide support for JSP- and servlet-based rich clients. A desktop-
like interface akin to that of the Swing JDesktopPane is a good choice for displaying windows that
belong to autonomous Web services. It's important the user interface presented by each Web
service is entirely dynamic so that the application canvas can remain entirely independent of the
Web services it will manage.

Another important component of the application canvas is the dependency database that tracks
dependencies for each input cell. The database must provide storage that persists across user
sessions. The dependency database must be an embeddable database with a small memory
footprint.

The dependency backtracking algorithm allows the application canvas to detect changes in
output of one Web service and feed these changes to the input fields of another Web service.

The Thick Client
In cases where the client application must operate when the client computer isn't connected to
the network, development of a thick client may be the only option. In this case, the client usually
is required to store some data provided by the user. Often, the client will be synchronized with the
server or with its peers when the computer goes online again. There are at least three classes of
applications in this category: RPC-based, JSP/servlet-based, and P2P.

RPC-Based Clients
Remote procedure calls have been a popular means of developing client/server-based
applications. Many RPC-based frameworks, such as RMI/CORBA, provide high-level functions
that make it easier for developers to build RPC-based systems. Most RPC systems provide data
marshalling and unmarshalling as well as toolkits for automatic proxy class generation. RPC is
sometimes combined with XML where input and output parameters are encoded in XML as
opposed to a binary format.

An important design consideration that arises when building RPC-based clients is that the client
and server will need to contain additional components to interpret RPC messages on the server
and on the client. Development and maintenance of these components may prove expensive.
Whenever possible, using servlets and JSP communication should be considered.

JSP/Servlet-Based Thick Clients
JSP/servlet-based thick clients distinguish themselves from RPC-based clients in that the client is
actually composed of two parts: the static part that's not dependent on the network connection
and the dynamic part that is. When the client computer is not connected to the network, the client
application executes the static part. When the client is connected, the dynamic part of the
application based on the JSP/servlet architecture becomes active. In essence, this architecture is
a thick Java client with an embedded thin Java client that's using servlets and JSPs to display a
user interface.

December 2001 6/8
Java Developer’s Journal

The advantage of combining the thick client with a dynamic thin client is that the communication
component on the client and server can now be eliminated from the design. But the application
may still need to synchronize its data with a server or Web service.

P2P Framework
The most promising data synchronization approach is perhaps Sun Microsystems' JXTA P2P
framework. The JXTA framework is an excellent synchronization data mechanism for the parts of
an application that act as peers. RPC is an alternative to the P2P approach. In most cases,
however, the RPC-based approach is likely to result in the development of more custom network
interface code - resulting in higher development and maintenance costs.

Deployment Strategies
Once you have the rich client solution, you need to get it to the end user. Various techniques are
available, each with its own pros and cons.

• Applet: Deploying the Java Swing user interface as an applet requires the end user's
browser to have the Java Plug-in installed. The cost of requiring the Plug-in is a one-time
download for each user of a 5MB-15MB setup file, where the size varies based primarily
on platform. (Microsoft Windows is at the low end.) In addition, using the applet may or
may not require changes to the HTML file to load. This depends upon the Plug-in version
supported and the user's browser. Using an applet as the delivery mechanism does
ensure that the user has the latest version of the client. Each time a user connects up to
the back end, the applet can be downloaded. The Java Plug-in supports caching, so it
won't have to download every time.

• Install Programs: InstallAnywhere and InstallShield are two popular solutions for
deployment. These tools and others like them offer the ability to provide a complete Java
Runtime Environment (JRE), the same 5MB-15MB download as the Java Plug-in, in
addition to your rich client application. Installation via these solutions is something users
are familiar with, but it can lead to users having multiple JREs on their desktops, one for
each installable object. The major drawback of these programs is the coordination of new
releases. You as the vendor must actively notify all users of the update and then each
user must download the new release. New versions of these products are thankfully
adding active update capabilities, so this last issue can be resolved.

• JNLP: Java Web Start is Sun's latest attempt to solve the incompatible browser runtime
environment and deployment issues. It uses a protocol called Java Network Launching
Protocol (JNLP) to provide for the installation of applications outside the browser but
within a secure execution environment. It requires an HTML page for the initial load of the
application but, once loaded, permits the browser to be shut down. There is also built-in
support for incremental updates. Sitraka's DeployDirector is another JNLP-based
deployment alternative that adds additional features.

December 2001 7/8
Java Developer’s Journal

Commercial and Free Software
A number of commercial and free software products have emerged that make it easier for Web
services developers to take advantage of rich GUIs. Several of these are mentioned, however,
this list includes only some of the more popular ones and is not intended to be exhaustive.

• Altio's flagship product AltioLive is a framework for the development of rich clients that
execute as applets within a Web browser. Their front end uses an extensive proprietary
widget set compatible with Java installations shipped with Internet browsers. The
framework also includes a presentation server that drives the user interface. The
presentation server uses proprietary protocols to communicate with the client. AltioLive
also includes a design tool for developing the graphical user interface.

• Bean Markup Language (BML) is an instance of an XML-based language customized
for the JavaBean component model. The language allows beans to be constructed and
wired together. The language is designed to be directly executable. That is, processing a
BML script results in the construction of a running Java application as described by the
script. The BML language has elements for creating new beans, accessing existing
beans, and executing bean methods.

• Droplets User Interface Server is a presentation server that extends some of the ideas
developed by the Remote AWT project at IBM. In the case of the Droplets Server, a C++
API is provided in addition to the Java API. Droplets also offer some prebuild servers that
handle a number of applications with rich Java GUIs that include e-mail, customer care
management, and content management. Droplets also include an innovative deployment
mechanism that allows application icons to be dragged from a Web page onto a user's
desktop.

• The Remote Abstract Window Toolkit (AWT) for Java is a server-side implementation
of AWT that allows any application running on one host to display a Java user interface
on another host. The AWT calls made on the server are transmitted to the client for
processing. That's why an AWT application running on the server can actually display its
user interface on the client. The RAWT toolkit is available from the IBM alphaWorks Web
site.

• Spidertop provides tools for the development of JSP and servlet-based Java user
interfaces. The flagship product, called Bali, includes an interpreter JavaBean component
that interprets a scripting language that can be served from servlets and JSPs to display
Java Swing user interfaces. The framework also includes a graphical JSP builder
incorporated into Sun Microsystems' Forte for Java that allows developers to build JSPs
graphically. The framework also includes a presentation server that simplifies
development of server-side controller components. The use of the presentation server is
optional as the interpreter JavaBean can communicate with servlets and JSPs without
the intervention of the presentation server.

Four Good Reasons

We have identified four factors that will drive the adoption of rich user interfaces for Web
services-based applications.

The first factor is the emergence of a new class of architectures that permits the development of
rich front ends based on servlet and JSP J2EE back-end systems. When using servlet and JSP-
based architectures, development costs of rich GUIs are comparable to development costs of
HTML-based front ends, while all the benefits of the Java GUIs are maintained.

The second factor is the interactive nature of Web services-based applications. Many Web
services-based applications will exhibit more characteristics of typical computer applications than
characteristics of information delivery systems. Highly interactive systems are better presented
using rich Java front ends than HTML.

December 2001 8/8
Java Developer’s Journal

The third factor is the advances in deployment technologies for rich Java GUIs.

The fourth factor is the emergence of the application canvas. The application canvas will give
developers a compelling reason for developing rich Java GUIs for Web services, as the
application canvas permits the end user to tie separate Web services into composite applications
not foreseen by the Web service developers.

We believe these four factors will result in a widespread adoption of rich Java GUIs for Web
services-based applications.

Figure 1

Figure 2

All Rights Reserved
Copyright © 2001 SYS-CON Media, Inc.

E-mail: info@sys-con.com

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries. SYS-CON is independent of Sun Microsystems, Inc. SYS-CON, JDJEdge 2001 International Java

Developer Conference or Java Developer's Journal is not affiliated with Sun Microsystems, Inc.

mailto:info@sys-con.com

